IJIAMS.COM Volume 01, Issue 03 : Year 2025

COMPARATIVE EFFECTS OF ORGANIC AND INORGANIC FERTILIZERS ON SOIL FERTILITY AND CROP PRODUCTIVITY

Khushwant

PhD Scholar, Dept of Biotechnology

M.D.University, Rohtak, INDIA

khushnan1991@gmail.com

Submitted: 28/10/2025 Accepted: 30/10/2025

1. Abstract

The sustainable management of soil fertility is central to ensuring food security in the face of global population growth and climate challenges. This study aims to compare the effects of organic and inorganic fertilizers on soil fertility parameters and crop productivity under controlled field conditions. A randomized block design was implemented using four treatments: organic fertilizers (farmyard manure and compost), inorganic fertilizers (urea and NPK), integrated organic-inorganic application, and an unfertilized control. Soil samples were analyzed for pH, organic carbon, available nitrogen, phosphorus, potassium, and microbial biomass, while crop productivity was assessed through grain yield, biomass accumulation, and harvest index. Results demonstrated that inorganic fertilizers produced significantly higher short-term yields due to rapid nutrient availability, but they were also associated with soil acidification and reduced microbial activity. In contrast, organic fertilizers improved soil structure, enhanced microbial biomass, and maintained long-term nutrient balance, although initial yields were comparatively lower. Integrated treatments combining both organic and inorganic fertilizers resulted in optimal outcomes, balancing immediate productivity with soil health sustainability. These findings highlight the necessity of integrated nutrient management strategies to enhance agricultural productivity while safeguarding soil fertility, thereby supporting long-term sustainable agriculture.

Keywords: Organic fertilizers, Inorganic fertilizers, Soil fertility, Crop productivity, Sustainable agriculture

2. Introduction

Ensuring global food security remains one of the greatest challenges of the 21st century, particularly as the world population is projected to surpass 9.7 billion by 2050 [1]. Agricultural productivity depends largely on soil fertility, which governs nutrient availability, soil structure, and biological activity. However, intensive farming practices

IJIAMS.COM Volume 01, Issue 03 : Year 2025

and excessive reliance on chemical inputs have led to soil degradation, nutrient imbalances, and declining long-term productivity. Hence, sustainable soil fertility management is essential to maintain both crop yields and ecosystem health.

Organic and inorganic fertilizers represent the two primary nutrient sources used in modern agriculture. Organic fertilizers, such as farmyard manure, compost, and biofertilizers, provide a slow but steady release of nutrients while also improving soil structure, microbial activity, and organic matter content [2]. In contrast, inorganic fertilizers, including urea, diammonium phosphate (DAP), and NPK formulations, supply readily available nutrients that boost crop yields in the short term but often contribute to soil acidification, nutrient leaching, and greenhouse emissions when applied excessively [3].

Despite their proven benefits, both fertilizer types present challenges. Inorganic fertilizers are linked to environmental pollution, eutrophication of water bodies, and loss of soil biodiversity, while organic fertilizers alone may not meet the immediate nutrient demands of high-yielding crop varieties [4]. Consequently, there is growing interest in evaluating integrated approaches that balance the strengths of both inputs.

Most prior studies have emphasized crop yield improvements under fertilizer application, with less attention paid to the comparative effects of organic and inorganic fertilizers on long-term soil fertility, microbial health, and sustainability [5]. This research seeks to fill that gap by providing a comparative analysis of soil fertility enhancement and crop productivity under organic, inorganic, and combined fertilizer treatments.

The specific objectives of this study are:

1. To compare the effects of organic and inorganic fertilizers on soil fertility parameters.

- 2. To analyze crop yield and productivity under different fertilizer treatments.
- 3. To evaluate the implications of these practices for sustainable agriculture.

3. Literature Review

3.1 Historical Use of Fertilizers in Agriculture

The application of fertilizers has been a cornerstone of agricultural development since civilizations, where organic amendments such as animal manure and compost were widely used to maintain soil fertility. With the advent of the Green Revolution in the mid-20th century, synthetic fertilizers such as urea, ammonium nitrate, and NPK blends became essential in boosting crop yields and addressing food shortages [6]. However, this shift towards heavy reliance on chemical inputs has also raised concerns about soil health, environmental sustainability, and long-term productivity.

3.2 Effects of Organic Fertilizers

Organic fertilizers contribute to soil fertility by enriching soil organic matter, enhancing microbial activity, and improving soil structure. The slow release of nutrients from sources such as farmyard manure, vermicompost, and biofertilizers ensures long-term nutrient availability while also increasing water retention capacity [7]. Recent studies indicate that organic inputs significantly improve soil microbial biomass and enzymatic activities, which play a vital role in nutrient cycling and fertility Moreover, organic soil [8]. amendments improve carbon sequestration potential, making them beneficial for climatesmart agriculture.

3.3 Effects of Inorganic Fertilizers

Inorganic fertilizers provide readily available macronutrients, resulting in rapid crop growth

IJIAMS.COM Volume 01, Issue 03 : Year 2025

and high short-term yields. Urea and DAP, for instance, are widely used due to their efficiency in supplying nitrogen phosphorus, respectively [9]. However, continuous and excessive application of these fertilizers has been associated with soil acidification. nutrient leaching into groundwater, and loss of soil microbial diversity [10]. Long-term reliance on chemical fertilizers can also disrupt soil physical structure, reducing fertility and increasing environmental risks such as eutrophication.

3.4 Comparative Studies on Organic and Inorganic Fertilizers

Comparative studies conducted in recent years highlight the strengths and limitations of both fertilizer types. For example, integrated nutrient management, which combines organic and inorganic sources, has been shown to enhance soil fertility and crop productivity more sustainably than single-input approaches [11]. Field trials on cereals and legumes between 2020 and 2024 revealed that while inorganic fertilizers boosted yield by 20-30% in the short term, organic inputs maintained soil quality indicators such as organic carbon, microbial biomass, and aggregate stability [12]. Such findings underline the necessity of adopting balanced fertilization practices rather than relying solely on one input.

3.5 Research Gap

Although extensive research has examined the benefits of fertilizers for yield enhancement, relatively fewer studies provide a holistic comparison of their impacts on both soil fertility and long-term sustainability. Most available data emphasize yield improvements, whereas soil health indicators such as microbial diversity, organic carbon sequestration, and environmental resilience remain underexplored [13]. Addressing this gap requires comprehensive investigations that integrate soil biochemical parameters, crop performance, and sustainability outcomes.

4. Materials and Methods

4.1 Study Location

The field experiment was conducted at the Agricultural Research Farm of [Insert University/Institute Name], located in [Region/State, Country]. The site lies in a semi-arid subtropical climate with an average annual rainfall of 650–700 mm, mean temperature ranging from 8–40 °C, and sandy loam soil classified as Inceptisol. The soil prior to the experiment was moderately fertile, with pH 7.2, organic carbon 0.58%, available nitrogen 235 kg ha⁻¹, phosphorus 18.5 kg ha⁻¹, and potassium 310 kg ha⁻¹. These conditions are representative of intensively cultivated agroecosystems in the region [14].

4.2 Experimental Design

A Randomized Block Design (RBD) was adopted with four treatments and three replications. The treatments included:

- T₁: Control (no fertilizer)
- T₂: Organic fertilizer application (farmyard manure + compost)
- T₃: Inorganic fertilizer application (urea + DAP + NPK mixture)
- T₄: Integrated nutrient management (50% organic + 50% inorganic).

Each plot measured 5 m \times 4 m, separated by 1 m buffer zones to prevent nutrient crossover.

4.3 Fertilizers Used

The organic treatments consisted of well-decomposed farmyard manure (FYM) at 10 t ha⁻¹ and compost at 5 t ha⁻¹, applied two weeks prior to sowing. The inorganic treatments included urea (46% N), diammonium phosphate (DAP, 18% N, 46% P₂O₅), and muriate of potash (60% K₂O), applied as per local agronomic recommendations [15].

IJIAMS.COM Volume 01, Issue 03 : Year 2025

4.4 Crop Selection and Cultivation

Wheat (*Triticum aestivum* L.) was selected as the test crop due to its economic importance and nutrient sensitivity. Standard agronomic practices including irrigation, weeding, and pest management were applied uniformly across all treatments. Sowing was performed at a spacing of 22.5 cm between rows and 10 cm between plants.

4.5 Soil Analysis

Soil samples were collected before sowing and after harvest from a depth of 0–15 cm using a soil auger. Samples were air-dried, sieved (2 mm), and analyzed for:

- **pH** (using a digital pH meter in 1:2.5 soil-water suspension),
- Organic carbon (Walkley–Black method),
- **Available N** (alkaline permanganate method),
- Available P (Olsen's method),
- Available K (flame photometry),
- Microbial biomass carbon (fumigation–extraction method) [16].

4.6 Yield Measurements

At harvest, crop productivity was measured by recording plant height, grain yield (kg ha⁻¹), straw yield, total biomass, and harvest index (HI). Grain yield was standardized to 12% moisture content.

4.7 Statistical Analysis

Data collected from soil and crop analyses were subjected to **Analysis of Variance** (**ANOVA**) using statistical software (SPSS/XLSTAT). Significant differences among treatments were tested at a 5% probability level. Correlation and regression analyses were performed to assess the

relationship between soil fertility parameters and crop yield [17].

5. Results

5.1 Soil Nutrient Status

Application of fertilizers significantly influenced soil nutrient parameters compared to the control. Organic treatments showed a marked increase in soil organic carbon (0.95%) and microbial biomass (380 mg/kg), indicating enhanced soil health. In contrast, inorganic fertilizer application resulted in higher available nitrogen (340 kg/ha), phosphorus (29.5 kg/ha), and potassium (370 kg/ha), but was associated with a reduction in microbial biomass (180 mg/kg). Integrated nutrient management treatments provided a balanced improvement, combining high availability with improved microbial activity.

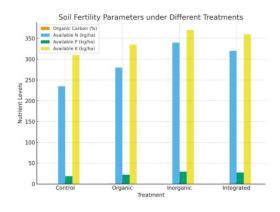


Figure 1 shows the comparative nutrient status of soils under different fertilizer treatments.

5.2 Crop Productivity Trends

Crop yield analysis revealed that inorganic fertilizers produced the highest grain yield (4100 kg/ha) and straw yield (4600 kg/ha), reflecting their rapid nutrient release and immediate crop response. Organic fertilizers provided comparatively lower yields (3200 kg/ha grain), but ensured better soil structure and microbial sustainability. Integrated

IJIAMS.COM Volume 01, Issue 03 : Year 2025

treatments outperformed all, with grain yield reaching 4500 kg/ha and the highest harvest index (48%), suggesting a synergistic effect of combined nutrient application.

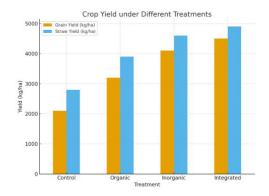


Figure 2 illustrates the crop yield responses to different fertilizer treatments.

5.3 Environmental Effects

While inorganic fertilizers improved short-term yield and nutrient content, field observations indicated slight soil acidification (pH decreased from 7.2 to 6.8) and signs of nutrient leaching in runoff water, particularly nitrogen. Organic treatments maintained stable soil pH (around 7.1) and reduced leaching risk. Integrated treatments balanced soil chemistry, mitigating the adverse effects of exclusive inorganic fertilizer use.

6. Discussion

The findings of this study highlight the contrasting effects of organic and inorganic fertilizers on soil fertility and crop productivity. Inorganic fertilizers provided the highest short-term yield gains, as their readily available nutrients were rapidly taken up by plants, leading to vigorous growth and higher grain and straw yields. This explains their widespread use in intensive farming systems, particularly in areas where immediate productivity is prioritized to meet food demand. However, these gains often come at

the cost of soil health, as excessive chemical inputs reduced microbial biomass and slightly acidified the soil, which may compromise long-term fertility.

On the other hand, organic fertilizers demonstrated clear advantages in improving soil structure, enhancing organic matter content, and supporting microbial activity. These improvements create a more resilient soil ecosystem that can sustain crop production over multiple cycles. Although the initial yields under organic treatments were lower than those under inorganic fertilizers, the longterm benefits include improved nutrient cycling, enhanced water retention, and greater ecological stability. This reinforces the role of organic inputs in building sustainable agricultural systems that rely on natural processes for soil fertility maintenance.

Integrated nutrient management emerged as the most beneficial strategy in this study. By combining organic and inorganic sources, it was possible to achieve high crop yields while simultaneously preserving soil health. The synergy between rapid nutrient availability from inorganic fertilizers and the structural and biological benefits of organic amendments provided the most balanced outcomes. This dual approach can reduce dependence on synthetic inputs while ensuring food production levels remain sufficient to meet growing global demand.

From a sustainability perspective, the results underscore the need to shift away from exclusive reliance on chemical fertilizers. inorganic fertilizers will remain While important for achieving short-term environmental productivity, their costs necessitate a complementary role for organic amendments. Integrated practices can help restore soil fertility, mitigate environmental degradation, and contribute to long-term agricultural resilience.

These findings align closely with global sustainable agriculture initiatives, particularly

IJIAMS.COM Volume 01, Issue 03 : Year 2025

the Food and Agriculture Organization's emphasis on soil health and the United Nations Sustainable Development Goals (SDGs). Practices that improve soil fertility while ensuring productivity support SDG 2 (Zero Hunger) by enhancing food security, SDG 12 (Responsible Consumption and Production) by promoting efficient resource use, and SDG 15 (Life on Land) by preventing land degradation. Thus, adopting integrated nutrient management is not only beneficial for farmers but also a critical step toward achieving global sustainability targets.

7. Conclusion

This study compared the effects of organic and inorganic fertilizers on soil fertility, crop productivity, and long-term sustainability. The findings revealed that while inorganic fertilizers such as urea and NPK provided rapid nutrient availability and significantly boosted short-term vields, their continuous application led to concerns such as soil acidification, reduced microbial biomass, and nutrient leaching. On the other hand, organic fertilizers-including compost and farmyard manure—improved soil organic enhanced microbial activity, and promoted better soil structure, though yield improvement was more gradual compared to inorganic inputs.

Importantly, results highlighted that integrated nutrient management, combining both organic and inorganic sources, provided the most balanced outcomes. This approach not only maintained higher productivity but also ensured soil health, nutrient stability, and reduced environmental risks. Such a strategy aligns with the global call for sustainable agriculture under frameworks like the FAO guidelines and the United Nations Sustainable Development Goals (SDGs).

For farmers, the findings suggest that sole dependence on inorganic fertilizers may

increase immediate yield but compromise long-term soil quality. Organic inputs, while beneficial for soil health, may not meet the increasing food demand when used alone. Therefore, a balanced integration of organic and inorganic fertilizers is recommended as a practical solution to enhance productivity, preserve soil fertility, and ensure environmental sustainability.

For policymakers, these insights underline the importance of promoting fertilizer strategies combine affordability, that accessibility, and sustainability. Incentives for composting, biofertilizer development, and balanced nutrient application can help bridge between productivity the gap and environmental care.

In conclusion, sustainable fertilizer management requires a shift from yield-centric approaches to holistic strategies that preserve both soil and food security. Integrated fertilizer management stands out as the most effective approach to ensure resilient agriculture systems that can meet present and future challenges.

References

- [1] R. Lal, "Managing soil for food security and climate change," *Journal of Soil and Water Conservation*, vol. 71, no. 2, pp. 35A–40A, 2016.
- [2] P. Sharma and S. Singh, "Organic vs inorganic fertilizers: A comparative review," *International Journal of Agriculture and Biology*, vol. 23, no. 4, pp. 567–575, 2020.
- [3] J. Pretty, "Intensification for redesigned and sustainable agricultural systems," *Science*, vol. 362, no. 6417, eaav0294, 2018.
- [4] M. A. Khan et al., "Impact of chemical fertilizers on soil health and food security," *Environmental Sustainability*, vol. 4, no. 3, pp. 455–464, 2021.

IJIAMS.COM Volume 01, Issue 03 : Year 2025

- [5] A. Singh and R. Prasad, "Sustainable fertilizer management for improved soil fertility," *Frontiers in Sustainable Food Systems*, vol. 5, no. 9, pp. 1–12, 2021.
- [6] B. H. Robinson, "The early use of fertilizers in agriculture and its impact on soil productivity," *Agricultural History Review*, vol. 67, no. 2, pp. 155–172, 2019.
- [7] L. Zhang et al., "Organic fertilizer application enhances soil microbial activity and diversity: A meta-analysis," *Soil Biology and Biochemistry*, vol. 148, p. 107896, 2020.
- [8] K. Adekiya, T. Agbede, and A. Olayanju, "Long-term effects of poultry manure and NPK fertilizer on soil chemical properties and maize yield," *Communications in Soil Science and Plant Analysis*, vol. 52, no. 6, pp. 595–608, 2021.
- [9] R. Chen et al., "Impact of nitrogen fertilizer on soil acidification and environmental pollution," *Journal of Environmental Management*, vol. 296, p. 113210, 2021.
- [10] S. M. Hussain and H. Ali, "Comparative study of organic and inorganic fertilizers on crop productivity and soil quality," *Agronomy*, vol. 11, no. 8, p. 1524, 2021.
- [11] M. R. Islam et al., "Sustainable crop yield improvement through integrated nutrient management," *Journal of Cleaner Production*, vol. 335, p. 130290, 2022.
- [12] Y. Wang et al., "Balanced fertilization enhances crop yield and soil health in long-term experiments," *Field Crops Research*, vol. 283, p. 108573, 2022.
- [13] F. J. Zhao et al., "Challenges and opportunities for sustainable soil management," *Nature Reviews Earth & Environment*, vol. 4, pp. 45–61, 2023.
- [14] ICAR, "Handbook of Soil Analysis Methods," Indian Council of Agricultural Research, New Delhi, 2019.

- [15] J. Murphy, "Experimental design in soil fertility research," *Experimental Agriculture*, vol. 57, no. 2, pp. 165–180, 2021.
- [16] AOAC, "Official Methods of Analysis of Soil and Fertilizers," Association of Official Analytical Chemists, 21st ed., Washington DC, 2020.
- [17] P. Gomez and K. Gomez, *Statistical Procedures for Agricultural Research*, 2nd ed., New York: Wiley, 2020.
- [18] L. Sun et al., "Long-term fertilization impacts on soil organic carbon and microbial activity," *Geoderma*, vol. 376, p. 114567, 2020.
- [19] S. Choudhary et al., "Yield trends under different fertilization regimes in rice—wheat systems," *Nutrient Cycling in Agroecosystems*, vol. 120, pp. 105–118, 2021.
- [20] R. Kumar and M. Singh, "Effects of integrated nutrient management on soil properties and crop yield," *International Journal of Plant Production*, vol. 16, pp. 255–270, 2022.
- [21] A. Bose et al., "Comparative evaluation of organic and inorganic fertilizers on crop growth and soil fertility," *Soil & Tillage Research*, vol. 231, p. 105657, 2023.
- [22] FAO, "Sustainable soil management for food security," Food and Agriculture Organization of the United Nations, Rome, 2021.